

An npm Network Analysis
Project Report

Peter Huettl
Northern Arizona University

Flagstaff, Arizona
ph289@nau.edu

Garrison Smith
Northern Arizona University

Flagstaff, Arizona
gts35@nau.edu

ABSTRACT

This paper is an analysis of the development
packages delivered through the npm package
management system [1]. The purpose of this
analysis is to quantify the interdependence of these
packages to determine the fragility of the system as
a whole. To accomplish this, we have crawled npm
for package and dependency data that we then
collected [2] and saved into a network to gather
network characteristics. Using network
characteristics such as connectedness , clustering
coefficient , and dependence , we were able to draw
conclusions regarding the network’s structure. We
found that the graphs would produce data in which
nodes were dependent on other nodes which made it
so the npm management systems are fragile.

1 INTRODUCTION

There are several questions we are interested in
answering with the analysis of this data. Namely,
how fragile is the modern web development
ecosystem? How reliant are popular websites on
external libraries? These are the concerns present in
the modern web ecosystem, especially for web
developers in large companies 1 . This is due to the
fact that almost all websites rely on external
libraries 2 that are downloaded by package managers
such as npm.

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

1 Explained in section 2 (Motivation)
2 Note that libraries can chain dependencies

As mentioned in the abstract, we plan to

address these questions by analyzing the network
characteristics of the graph we have built by
crawling for npm data [2]. Due to the unbiased
nature of our collection, this approach will allow us
to draw conclusions that generalize to the entire
npm package management system.

2 MOTIVATION

Large companies with a prominent web presence
often rely on consistent traffic to their site. This may
be due to the fact that the site produces sizable ad
revenue, or that they provide goods or services
through their website. In either case, it is of the
utmost importance that their site is always available
to be visited by consumers. Due to the scale of
these sites, it is often the case that JavaScript
libraries are utilized to simplify the development
processes. Popular libraries such as Bootstrap [3],
jQuery [4], and Promise [5].

Although these package managers provide an
overall positive service to the web development
community, there are several different cases of
package outages causing development issues.
Firstly, there was the left-pad [6] incident. This was
a situation in which a relatively innocuous package
entitled left-pad was inadvertently removed from
the npm system. This 11 line [7] package simply
prefixed a given string with a given character to a
specified length. Despite this, many other packages
and websites had included and were reliant on this
package. In turn, its removal caused the failure of
these dependent sites.

An npm Network Analysis 2

Unfortunately, this is not the only case, as
there was a similar incident regarding the deletion
of a user named floatdrop [8]. The user’s package
was automatically marked as spam, and
consequently triggered the deletion of their account.
Their account hosted several highly depended on
packages, with one such example being the
require-from-string package [9].

There have been other in-depth analyses of the
npm dependency network. One such example [10]
also highlighted metrics such as between-ness
centrality but we plan to focus our efforts on a wider
array of network characteristics to glean broader
insight. This is why and how we plan to perform
our network analysis.

3 DATA

Firstly, we needed to establish the fundamental
network model of the network we were creating. It
was clear that the entities of our network would
represent packages hosted on npm. To create a
network model that most directly addresses the
original problems posed, we then established that
the relationships in our network would denote one
package depending on another. Because package
dependencies are uni-directional, our network will
be represented by a directed graph.

3.1 Crawling npm

Next, we began collecting the data, but, because
npm deprecated the use of the /-/all registry
endpoint [11] which had previously served as a list
of all packages currently hosted on npm. This,
although reasonable as they have recently surpassed
600,000 [1] packages, meant that we were going to
have to crawl and collect our own subset of
packages. As such, we wrote an npm_crawler.py
[12] script that crawled using a modified Snowball
Sampling method 3 [13].

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

3 Algorithm only initially inspired by Snowball Sampling

Our sampling script would begin at a random
package and iteratively crawl to dependencies and
dependents, storing all associated package info and
all found package names. This process would repeat
until all connected packages were gathered, and
then the search would restart from a random
package. This ensured that we were also collecting
the packages with no dependencies.

3.2 The Collected Data

To improve the reproducibility of our conclusions,
we have open sourced our crawler, data, and our
Jupyter notebook [14]. We created and ran our
Jupyter notebook in a Docker container that was set
up with DataQuest's Data Science Environment 4
[15]. This environment includes:

● python3
● numpy
● Scipy

Our crawler has generated several different
JSON data files that are also hosted in the data
folder of our GitHub repo [2]. This data is in its raw
form in that it includes any possible information we
thought could ever be valuable to our metrics. So,
for example, an item in one of our JSON files would
look as follows 5 :

{
 "author" : {
 "email" : "sindresorhus@gmail.com" ,
 "name" : "Sindre Sorhus" ,
 "url" : "sindresorhus.com"
 },
 "dependencies" : {
 "time-zone" : "^1.0.0"
 },
 "description" : "Pretty datetime" ,
 "devDependencies" : {
 "ava" : "*" ,
 "xo" : "*"
 },
 "license" : "MIT" ,
 "name" : "date-time"
}

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

4 Specifically the dataquestion/python3-starter image
5 The example is the `date-time` package

An npm Network Analysis 3

Table 1: Network Characteristics (Sample 1)

Network
Characteristic

200
Edges

1,000
Edges

2,000
Edges

of Nodes 353 1402 2493

Betweenness
Centrality

2.1x10 -7 7.1x10 -8 7.7x10 -8

Density 0.0016 0.0005 0.0003

Transitivity 0 0 0.0012

Avg. Path
Length

0.3879 0.5298 0.7607

Avg. Node
Connectivity 6 0 0 0

Avg. Clustering
Coefficient

0 0 0.0001

Avg. Neighbor
Degree 7 0.0255 0.0879 0.2574

Avg. Closeness
Centrality

0.0016 0.0005 0.0004

Avg. Degree
Centrality

0.0032 0.001 0.0006

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

6 Our networks are already disconnected due to the
inclusion of standalone packages so our average node
connectivity will likely always be 0 (unless our random
sample selects a clique of packages)
7 The neighbor degree increases as edge count increases

Table 2: Network Characteristics (Sample 2)

Network
Characteristic

5,000
Edges

7,000
Edges

10,000
Edges

of Nodes 4617 5638 6595

Betweenness
Centrality

5.3x10 -7 4.5x10 -6 2.1x10 -5

Density 0.0002 0.0002 0.0002

Transitivity 0.0053 0.0074 0.0120

Avg. Path
Length

2.8633 6.392 7.7207

Avg. Node
Connectivity

0 0 0

Avg. Clustering
Coefficient

0.0018 0.0043 0.0114

Avg. Neighbor
Degree

0.6898 1.1954 1.8215

Avg. Closeness
Centrality

0.0004 0.0008 0.0028

Avg. Degree
Centrality

0.0005 0.0004 0.0005

4 ANALYSIS

We conducted our analysis by using 2 main
methodologies. Firstly, we calculated many network
characteristics on many different network sizes to
ensure the validity of our results. Secondly, we
analyzed the visualizations of the networks, and
their metrics compared to one another.

4.1 Network Characteristics

We decided on 10 key network characteristics to
analyze to provide the most relevant data to answer
the original question we posed. As such, we
calculated the following metrics on graphs with
various edge counts:

An npm Network Analysis 4

● Number of Nodes
● Betweenness Centrality
● Density
● Transitivity
● Average Path Length
● Average Node Connectivity
● Average Clustering Coefficient
● Average Neighbor Degree
● Average Closeness Centrality
● Average Degree Centrality

We aggregated this data into Table 1 and Table
2 and labeled these tables with respect to the graph
edge count and the metric being analyzed. We chose
to highlight these metrics for the edge counts 200,
1,000, 2,000, 5,000, 7,000, and 10,000. We chose
these intervals specifically to ensure that the
conclusions we were drawing from the data were
founded on patterns rather than random chance.

On the low-end, we chose to consider 200
package dependencies. We chose this number
deliberately to model the average number of
packages included in a single large website
package 8 . This small-scale simulation allows us to
apply the metrics we calculate to an actual,
real-world project.

Conversely, on the high-end, we considered a
sub-network with 10000 dependency connections.
The purpose of this sub-network was to create a
manageable 9 dataset that more closely resembles
the entire npm network. From this, we were able to
collect data that can be more-or-less scaled up to
represent the entire npm network. This sub-network
also provided some of the most interesting network
characteristics due to its large size. For example,
this sub-network allowed us to see that the average
path length was increasing as we kept more paths in
our network because it filled out the network rather
than shortening the average path.

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

8 Keeping in mind that packages include other packages
9 npm’s entire network is 600,000 nodes

4.2 Graph and Metric Visualizations

The next category of analysis that we utilized was
creating visualizations. There were two main
categories of visualizations that we employed.
Those being:

● Graph visualizations
● Metric visualizations

The graph visualizations were an attempt to
translate our dependency networks into graphs that
could be visually parsed. This was the more
challenging of the two visualization methods due to
the sheer size of the networks. Even smaller
sub-networks resulted in a complicated mesh of
nodes.

That being said, we were able to simplify the
graphs to a consumable scale in Figures 1 and 2 on
the following page. The red ring of circles in these
figures are the nodes or the packages of our
sub-network. As you can see, this ring is more
densely packed in Figure 2 due to the increased
sub-network size. Figure 1 was the 500 edge
sub-network while Figure 2 was the 1000 edge
sub-network.

Inside this ring of nodes, there are the directed
edges denoting a package being dependent on the
other nodes that the arrows leaving to point to. Our
visualization denotes arrowheads as thicker
rectangles to assist in differentiating them from the
rest of the edge.

We have also included several charts that help
visualize the change in our metrics as we increase
the sample size. For every relevant network
characteristic gathered, we have created charts to
demonstrate this change. Every chart is labeled with
the metric that was gathered, and the axes are
labeled by the size of the sub-network and the value
of the characteristic. These charts also help
accentuate the true values of the metrics and how
these metrics could be extrapolated to draw
conclusions on the entire npm system.

An npm Network Analysis 5

Figure 1: 500 Edge Sub-network

Figure 2: 1,000 Edge Sub-network

Figure 3: Number of Nodes

Figure 4: Betweenness Centrality

Figure 5: Density

An npm Network Analysis 6

Figure 6: Transitivity

Figure 7: Average Path Length

Figure 8: Clustering Coefficient

Figure 9: Average Neighbor Degree

Figure 10: Average Closeness Centrality

Figure 11: Average Degree Centrality

An npm Network Analysis 7

4.3 Outlier Data Points

To analyze specific packages, we calculated some
metrics on individual nodes. In our analysis of the
individual nodes, we found several interesting
outlier data points. Firstly, we found that a package
named no-one-left-behind [16] that depends on
1,000 total packages 10 which was the most
dependent package in our sub-network.

The next interesting data point that we found
was the package that was most depended on. In our
sub-network, we found that a package named
lodash [17] that was depended upon by 1357
packages, which was more than any other.

Finally, the last interesting metric we found
was that when we ran the PageRank algorithm on
our sub-network of 10,000, the highest value node
was also lodash with a PageRank score of 0.0128.

Interestingly, upon further research, we found
that these outlier packages we identified line up
with the actual package data of npm [18]. In reality,
lodash is the most depended upon package in the
npm system, and according to other metrics ran,
no-package-left-behind is the package with the most
dependencies. In actuality, lodash is also the
package with the highest PageRank score, but the
score others have calculated is 0.0159.

The correspondence of our data with the actual
data of the entire npm system demonstrates that our
network model is an accurate scaled down
representation of the characteristics that can be
found throughout the entire package ecosystem.
The preservation of trends is important to ensure
that accuracy and reproducibility of our analysis.

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

10 Only 964 in our sub-network due to data restrictions

5 FINDINGS

In our graphs and from our data above we can
conclude that there are some modules that have no
dependencies and many dependents and others that
have many dependencies and no dependents and as
well there are many that are in between the two.
However by looking at our metrics that we found
we can evaluate the risks that come from software
packages to download counts to update frequencies
and how this can effect our data.

Looking through our data we can show that
most critical modules have cascading impact on
other modules. Since there is a cascading
relationship between these dependencies then we
see that there is a removal package which can affect
another package, which affects other packages, and
so on and so forth. To justify this we can always
look at a smaller data set within our data and check
nodes that are incredibly small and continue to
nodes that are exponentially bigger. Doing this we
can see that the clustering coefficient for some of
the graphs start to get out of hand and we start to
see many dependent nodes that rely on other nodes
to get their information. This idea then shows us
that the nodes get more and more dependent on
each other and there we can conclude that the web
software needs certain updated software from a
different software which then as said above goes
into a downward spiral until we get to a software
system that does not even work anymore. Which
means that out of date software causes many other
software products to shut down because they were
dependent on a certain type and now they cannot
get updated from that type anymore.

Another finding is that when there is a node
connected to by 4 other nodes which make the
initial node dependent on the other ones this can
cause a vulnerability factor to play role in which the
initial node becomes too dependent on other nodes
and eventually will cause the chaos to happen
between all nodes.

An npm Network Analysis 8

One aspect that we noticed was that the
betweenness centrality would rise as we would add
new nodes and the degree centrality would get small
as new nodes were added. This caused some
interesting ideas to arise while we were looking at
the data. When a graph has high betweenness
centrality and low degree centrality that means there
are many clusters in the graph as the graph gets
bigger. This also means that few and fewer nodes
create bridges for other information to pull through
these nodes. This can create a single point of failure
more times than not which means that those failure
points are the nodes that cause the chaos to happen
when software packages get removed.

When we were calculating the graphs from our
data that we had there was a something that
happened while calculating transitivity and average
path length. We did not notice it until we made out
bar graphs but what happened is that in the lower
levels of edges that we would calculate there was no
data for transitivity and for average path length but
when we hit 10000 edges the number skyrocketed
and that seems intriguing. As we concluded earlier
we noticed that there were many failure points that
could happen in the graph and many nodes that
were dependent on each other because of the degree
centrality. However, transitivity states that if I can
get to node x from node y and node y to node z then
I can get from node x to node z. If this is the case
then at 10000 nodes we had a very well average
transitivity for the graph this would only mean that
yes maybe there were many nodes together
connected to each other they could have also been
in a clique which means that there is a small bias
that happens for these certain nodes.

Another idea is that because our connectedness
was zero then there could have been small cliques
that were not connected to the graph at all which
was stated in the tables up above. This
connectedness never became anything except zero
so this can show that there is going to be at least
one group that is possible in a transitivity state on
the graph but is not connected to the rest of the
graph this can also conclude that no matter what the
graph is never connected.

Something that we noticed when calculating
the density of our graphs was that when the edges
were increased in the graph the nodes would start to
cap at a certain point and the density would go
down. This means that there are not many nodes
that could potentially have connections to another
node. In addition, this helped us better understand
why certain nodes were not fully connected to the
graph but would have made the transitivity high for
the graph as well. This idea can also better
understand what happens when we have nodes
dependent on nodes which are dependent on more
nodes. Furthermore better understand why there us
failure nodes within modern web development
applications. Finally, this can help conclude the idea
of web development applications shutting down
after a certain period of time.

The last finding that we found was that when
we were finding metrics to build our data points we
noticed that we could not get our diameter for our
graph because there were too many separate nodes
from each other on the graph and too many nodes
that were not fully connected to the graph. This
helps us better understand why we were getting the
conclusions that we were getting in the data points
and why the connectedness was always resulting in
zero. In addition, we can state that the diameter was
just impossible to find because of how the
conclusions came to be.

As for all of our findings, the main idea was to
show that there is going to be many nodes in our
graph that are dependent on other nodes in the
graph and those nodes are going to be dependent on
other nodes as well. This can cause chaos within the
graph because if one node wanted to get
information about anything it would have to search
through an entire tree and at the end of the tree
there might not be a node that has the information it
is looking for which can cause this node to fail and
filter out all the other nodes that failed as well with
it when they went to search for that data. These
findings help us wrap up what we are trying to look
for in the npm API and help us better understand
what is happening in the modern web development
ecosystem.

An npm Network Analysis 9

6 CONCLUSION

In conclusion, we were looking to answer the
question: “how fragile is the modern web
development ecosystem?” We were interested in
this due to the implications such a question has on
the modern web development ecosystem. We began
by first crawling the npm web API to gather a
meaningfully large dataset from which to draw
conclusions. To accomplish this, we created a
crawler tool that implements a modified Snowball
Sampling method to iteratively build up a JSON file
that stores information such as dependencies,
package authors, and general package descriptions.

From this data, we were able to calculate
meaningful network characteristics that allowed us
to address the original question that we prompted.
From our findings, we can conclude that the npm
package management systems are fragile
throughout each packages lifetime. This was shown
through creating graphs in networkX that allowed
us to output data on certain metrics. We were also
able to take these metrics and produce them into
tables that were later put into bar graphs and line
graphs. These graphs from the tables and the data
that we were able to pull from the metrics helped us
better understand why these npm package
management tools are fragile as time goes by. The
main conclusion was that because nodes are
dependent upon nodes which are dependent upon
nodes this dependency can cause fragile nodes to
take place within a graph which means that it can be
very difficult to find a handful of important nodes
within these graphs.

As before these ideas and conclusions that we
found were based on all the facts that we were able
to find in our graphs and the fact that npm had a
nice API documentation to get all the nodes we
need to justify our conclusion. As said before many
large companies need to recognize that the web
development packages that they may use could go
out of date and if that were to happen then the that
web development package could fail because if that
package depends on other packages and those
packages were to also fail because they depend on
other packages then the idea of losing the web
package and losing the traffic flow that goes through

their website could devastate their company as a
whole. The point of this project is to show the data
that supports these claims and show that many
packages that are used in web development are too
reliant on each other and this can cause many
companies to lose money.

To conclude the purpose of this project is to
analyze the development packages delivered
through the npm package management system. The
general idea of this analysis is to quantify the
interdependence of these packages to determine the
fragility of the system as a whole. To accomplish
this, we have crawled npm for package and
dependency data that we then collected and saved
into a network to gather network characteristics.
The conclusion is that there are many packages that
are dependent upon other packages and those
packages are dependent on more packages and
because of this scenario the network as a whole is
fragile and can be easily broken.

An npm Network Analysis 10

REFERENCES

[1] Anon. npm. Retrieved April 28, 2018, from

https://www.npmjs.com/

[2] Peter Huettl. 2018. petetetete/cs499-project. (March
2018). Retrieved April 28, 2018, from
https://github.com/petetetete/cs499-project/tree/mast
er/data

[3] Twitter. 18AD. bootstrap. (April 18AD). Retrieved
April 28, 2018, from
https://www.npmjs.com/package/bootstrap

[4] JS Foundation. 18AD. jquery. (January 18AD).
Retrieved April 28, 2018, from
https://www.npmjs.com/package/jquery

[5] Forbes Lindesay. 17AD. promise. (September
17AD). Retrieved April 28, 2018, from
https://www.npmjs.com/package/promise

[6] Npmjs. 2016. kik, left-pad, and npm. (March 2016).
Retrieved April 28, 2018, from
https://blog.npmjs.org/post/141577284765/kik-left-p
ad-and-npm

[7] David Haney. NPM & left-pad: Have We Forgotten
How To Program? Retrieved April 28, 2018, from
http://www.haneycodes.net/npm-left-pad-have-we-f
orgotten-how-to-program/

[8] Npmjs. 2018. Incident report: npm, Inc. operations
incident of January 6, 2018. (January 2018).
Retrieved April 28, 2018, from
https://blog.npmjs.org/post/169582189317/incident-r
eport-npm-inc-operations-incident-of

[9] floatdrop. 18AD. require-from-string. (April 18AD).
Retrieved April 28, 2018, from
https://www.npmjs.com/package/require-from-string

[10] Burak Arikan. 2016. Analyzing the NPM
dependency network – Graph Commons – Medium.
(April 2016). Retrieved April 28, 2018, from
https://medium.com/graph-commons/analyzing-the-
npm-dependency-network-e2cf318c1d0d

[11] Npmjs. 2017. Deprecating the /-/all registry
endpoint. (February 2017). Retrieved April 28, 2018,
from
https://blog.npmjs.org/post/157615772423/deprecati
ng-the-all-registry-endpoint

[12] Peter Huettl. petetetete/cs499-project. Retrieved
April 28, 2018, from
https://github.com/petetetete/cs499-project/blob/mas
ter/src/npm_crawler.py

[13] Stephanie. Snowball Sampling: Definition,
Advantages and Disdvantages. Retrieved April 28,

2018 from
http://www.statisticshowto.com/snowball-sampling/

[14] Peter Huetl. petetetete/cs499-project. Retrieved
April 28, 2018, from
https://github.com/petetetete/cs499-project

[15] Vik Paruchuri. 2017. Docker: Data Science
Environment with Jupyter. (December 2017).
Retrieved April 28, 2018, from
https://www.dataquest.io/blog/docker-data-science/

[16] zalestax. 18AD. no-one-left-behind. (January
18AD). Retrieved April 28, 2018, from
https://www.npmjs.com/package/no-one-left-behind

[17] Anon. 18AD. lodash. (April 18AD). Retrieved April
28, 2018, from
https://www.npmjs.com/package/lodash

[18] Anvaka. npm rank. Retrieved April 28, 2018, from
https://gist.github.com/anvaka/8e8fa57c7ee1350e34
91

